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Dynamics and flow structures in the turbulent
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vortex-induced vibrations

By C O N S T A N T I N O S E V A N G E L I N O S
AND G E O R G E E M K A R N I A D A K I S†

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

(Received 13 October 1998 and in revised form 25 June 1999)

We present simulation results of vortex-induced vibrations of an infinitely long flexible
cylinder at Reynolds number Re = 1000, corresponding to a ‘young’ turbulent wake
(i.e. exhibiting a small inertial subrange). The simulations are based on a new class
of spectral methods suitable for unstructured and hybrid grids. To obtain different
responses of the coupled flow–structure system we vary the structure’s bending stiffness
to model the behaviour of a vibrating inflexible (rigid) cylinder, a cable, and a beam.
We have found that unlike the laminar flow previously studied, the amplitude of
the cross-flow oscillation is about one diameter for the cable and the beam, close to
experimental measurements, but is lower for the rigid cylinder. We have also found
that for the latter case the flow response corresponds to parallel shedding, but for
the beam and cable with free endpoints a mixed response consisting of oblique and
parallel shedding is obtained, caused by the modulated travelling wave motion of
the structure. This mixed shedding pattern which alternates periodically along the
span can be directly related to periodic spatial variation of the lift force. In the
case of structures with pinned endpoints a standing wave response is obtained for
the cylinder; lace-like flow structures are observed similar to the ones seen in the
laminar regime. Examination of the frequency spectra in the near wake shows that at
Re = 1000 all cases follow a − 5

3
law in the inertial range, which extends about half

a decade in wavenumber. However, these spectra are different in all three cases both
in low and high frequencies, with the exception of the beam and cable, for which the
high-frequency portion is identical despite the differences in the displacement time
history and the large-scale features of the corresponding flow.

1. Introduction
Fluid flows over flexible cylinders arise in many engineering situations, such as

transmission lines, heat exchangers, marine cables towing instruments, flexible risers
used in petroleum production and mooring lines, and other marine applications
(see Blevins 1990; Vandiver 1991; Ramberg & Griffin 1976; Hover, Grosenbaugh &
Triantafyllou 1994; Yoerger et al. 1991; Furnes 1998). It is important to understand
the flow dynamics of the wake and be able to predict the hydrodynamic forces
and motion of such structures caused by vortex-induced vibration (VIV). Simplified
models rely on the force input as well as the added mass coefficient and correlation
lengths (see Furnes 1998; Vandiver & Li 1994). From the fundamental point of view,
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it is important to understand how the near wake is modified by the motion of the
cylinder, which in turn depends on the flow conditions, the structural characteristics,
and the type of support of the structure. While there has been significant progress in
understanding the wake of a stationary cylinder in the last few years, especially in the
low Reynolds number range (see Williamson 1996), there have been very few studies
of the wake of freely oscillating cylinders (see Bearman 1984) with the emphasis
placed primarily on the nonlinear dynamics of the structure, while modelling the
wake as a simple oscillator (see Parkinson 1989).

In previous work, we have used direct numerical simulation to investigate laminar
flow past a freely vibrating cable in three dimensions (see Blackburn & Karniadakis
1993; Newman & Karniadakis 1995, 1996, 1997). In particular, we employed a simple
wave equation to model the motion of the structure, thereby neglecting the effect of
bending stiffness. We found that, in the low Reynolds number regime we investigated,
there are two possible states of the wake: one that corresponds to a travelling wave
response, and another one that corresponds to a standing wave response. The first state
produces a vorticity field consisting of oblique ‘rollers’ shed off the cylinder upper and
lower surface. The second state corresponds to a three-dimensional staggered pattern
forming lambda-type vortices. The existence of both states has been demonstrated
recently by Olinger (1996), who used low-order modelling based on circle maps to
represent shedding patterns behind flexible cables.

In these previous simulations, periodic boundary conditions were imposed on
the side boundaries for both the flow and the structure. This configuration is an
idealization, in essence, of a very long cable that is subject to spanwise disturbances
of maximum wavelength determined by the imposed aspect ratio (length-to-diameter
ratio L/d). In general, periodic boundary conditions seem to favour the travelling
wave response in our simulations, but for low Reynolds numbers a standing wave
one will persist for some time following a standing wave initial condition. Even in the
case of a travelling wave initial condition, if the cable has a relatively small aspect
ratio and is allowed to vibrate only in a cross-flow direction, the oblique shedding
breaks down giving rise to a standing wave response.

Standing waves appear more naturally (even at higher Reynolds numbers) if
the endpoints of the structure are pinned (i.e. fixed with all even derivatives of
displacement equal to zero). The boundary conditions for the flow in this spanwise
direction are still periodic. This configuration corresponds to a very long flexible
cylinder supported by an array of fixed supports, uniformly distributed a distance L
apart from each other.

Although standing wave patterns are more common in experimental situations,
travelling wave responses have also been realized both in laboratory and field exper-
iments, for example in the work of Alexander (1981), and in low Reynolds number
experiments in the work of Van Atta, Gharib & Hammache (1988). Usually, travel-
ling and standing wave patterns coexist, and this is also seen in the simulations. To
document such a mixed response, we have simulated a relatively long cable (≈ 100d,
where d is the diameter) with both of its endpoints pinned. The cable tension T and
mass ratio ρ used were the same as for the simulations in Newman & Karniadakis
(1997) (non-dimensional values of T = 8.82 and ρ = 2 respectively).

In figure 1 we plot the resulting response from the motion of the flexible cylinder,
which was allowed to oscillate only in the cross-flow direction. We see that in regions
close to the pinned endpoints a standing wave is developed, whereas in the mid-span
a travelling wave appears with a symmetry line at the mid-point. We also see that
due to constructive interference large amplitudes of y/d ≈ 1 are obtained. This value
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Figure 1. Flow past a freely vibrating flexible cylinder with pinned endpoints at Re = 100. Shown
is the spanwise distribution of the amplitude of the cross-flow motion versus time. For clarity
isocontours at y/d = ±0.4 are used which are far below the maximum value of 1 observed. The
chessboard pattern corresponds to a standing wave response and the parallel lines to a travelling
wave one.

should be contrasted with the ‘free’ periodic ends case, which gives a maximum
amplitude of y/d ≈ 0.5d–0.6d at this Reynolds number (Re = 100) (see Newman &
Karniadakis 1997). More specifically, the amplitude of about 0.5d–0.6d is obtained
for laminar flow irrespective of the response, i.e. travelling or standing wave, although
the lift force in the former case is less than half of the lift force of the latter. This
result points to the importance of the phase difference between the motion and the
lift force, the selection of which is based on a subtle and yet unexplained coupling
mechanism between the near-wake dynamics and the structure dynamics.

Another important factor that affects the coupled flow–structure response is the
structural characteristics, i.e. damping and bending stiffness. The case of zero struc-
tural damping results in the maximum response at resonant (lock-in) conditions. The
elasticity of the structure, on the other hand, determines the excited modal shape.
Therefore, a tension-dominated cable with zero bending stiffness will respond differ-
ently than a beam with finite bending stiffness even at lock-in conditions. In laminar
states, both structures and the resulting flow pattern are identical as the only excited
mode is the first one. However, at higher Reynolds number in the transitional and
turbulent flow states, a multi-modal response is obtained. Therefore, even if the first
mode dominates the response, excitation of higher modes of the structure is possible,
giving rise to significant differences in the topology and dynamics of the near wake.
For long cables, high modes usually dominate the response and thus the effect of
bending stiffness cannot be neglected (see Furnes 1998). In engineering practice, a
simple criterion has been developed to decide what type of modelling is to be used
(see Vandiver 1991). For example, a structure can be modelled as a cable if it is
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tension-dominated, i.e. T/(EIk2) > 30, otherwise it is modelled as a beam and its
bending stiffness should be taken into account. Here T is the tension, EI the bending
stiffness, and k is the wavenumber describing the excitation mode.

In the current work, we investigate the physics of VIV in a simplified setting, one
which is computationally convenient but still maintains the main engineering features.
In particular, we consider long flexible cylinders, which we will model as linear cables
and beams subject to resonant VIV at Reynolds number Re = 1000, which is one
order of magnitude higher than the one considered in our previous work (Newman
& Karniadakis 1997). At this Reynolds number flow past a stationary cylinder gives
rise to a turbulent wake (see Williamson 1996). While some experimental evidence
suggests that for Re> 500 there are no significant Reynolds number effects (see
Vandiver 1991), more recent experiments by Ching, So & Zhou (1998) and our
simulations suggest otherwise. A further simplification is that we only consider here
the dominant motion which is in the cross-flow direction; that is, we neglect the
amplitude of the streamwise motion, which is typically 10% to 15% of the amplitude
in the cross-flow motion. Finally, since we are interested in the maximum possible
response we neglect the effect of structural damping.

The specific questions we address are the following.
What is the maximum amplitude response of cables, beams and rigidly vibrating

cylinders in the ‘young’ turbulent regime, and how does it compare with the response
in the laminar flow regime?

What is the phase difference between structure motion and lift forces, and what
flow features determine the selection process?

What are the excited structural modes, and what flow structures are responsible for
a multi-modal excitation in the turbulent regime?

What are the qualitative and quantitative differences between the turbulent wake
of a stationary cylinder and the wakes behind freely vibrating rigid cylinders, and
flexible cables and beams?

To address these questions, we use direct numerical simulation based on a new
spectral method that employs unstructured grids and dynamic refinement. In § 2 we
summarize the simulation parameters, and we include more details of the simulation
and the method in Appendix A. In § 3 we present results for the vibration amplitude
and lift force time histories as well as their phase difference. In § 4 we present statistics
of the turbulent near wake and of the structure, and in § 5 we present representative
flow visualizations, with a discussion of the visualization methodology employed in
Appendix B. We conclude with a discussion in § 6.

2. Simulation parameters
We report here simulation results at Reynolds number Re = 1000 and mass ratio

(cylinder mass over displaced fluid mass) ρ = 2, which is a representative value for
VIV in water. The Reynolds number is defined based on the cylinder diameter d and
the free-stream velocity U. In all cases we neglect the structural damping as we are
interested in the maximum amplitude response. We also allow only vertical motions
in the crossflow y-direction, i.e. we do not allow any motion in the streamwise x-
direction. We have chosen the structure eigenfrequency to be approximately equal to
2πSt (where St is the Strouhal number of the corresponding stationary cylinder flow)
as we are interested in lock-in states only. Deviations from this resonant state and
transition to quasi-periodic states have also been studied in Evangelinos (1999).

The governing equations are the incompressible Navier–Stokes equations cou-
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pled with the equation of the structure dynamics. All of our variables are non-
dimensionalized using the cylinder diameter d and the inflow velocity U. In the
following, we will refer to a cable as the structure whose dynamics is described by

∂2y

∂t2
= c2 ∂

2y

∂z2
+
Fy

ρ
⇐⇒ ∂2ŷm

∂t2
= −Ω2m2ŷm +

F̂y

ρ
(2.1)

in physical and Fourier space (Fourier series expansion in terms of ei(2π/L)mz), respec-
tively. Here, m is the Fourier mode, c2 = T/ρ and Ω = c2π/L; for our simulations
L = 4π is the length of the cable in the equilibrium position. Thus, to establish lock-in
for the mth mode of oscillation, we choose Ωm ≈ 2πSt . Fy here is the total lift force,
i.e. the sum of pressure and viscous forces exerted by the fluid on the structure in the
y-direction.

Similarly, we will refer to a beam as the structure whose dynamics is described by

∂2y

∂t2
= −γ2 ∂

4y

∂z4
+
Fy

ρ
⇐⇒ ∂2ŷm

∂t2
= −Ω2m4ŷm +

F̂y

ρ
(2.2)

in physical and Fourier space, respectively. Here, γ2 = EI/ρ and Ω = γ(2π/L)2. Again,
to establish lock-in for the mth mode, we choose Ωm2 ≈ 2πSt . Thus for m = 1 both
the cable and the beam cases at lock-in reduce to Ω ≈ 2πSt and so the necessary
conditions for a cable with tension T and a beam of bending stiffness EI to exhibit
lock-in at this mode are

c ≈ LSt =⇒ T ≈ ρL2St2, (2.3a)

γ
2π

L
≈ LSt =⇒ EI ≈ 1

4
ρ
L4

π2
St2. (2.3b)

In the case of the pinned endpoints we use a Fourier sine expansion (in terms of
sin ((π/L)mz)) for the structure’s displacement. This expansion automatically satisfies
the boundary conditions. This gives Ω = c(π/L) and Ω = γ(π/L)2 for the cable and
the beam respectively and (2.3) becomes

c ≈ 2LSt =⇒ T ≈ 4ρL2St2, (2.4a)

γ
π

L
≈ 2LSt =⇒ EI ≈ 4ρ

L4

π2
St2. (2.4b)

The coupled Navier–Stokes/structure dynamics equations are discretized in space
using a new spectral method that employs a hybrid grid in the (x, y)-plane and
Fourier complex exponentials in the z-direction (cylinder axis). The parallel code
NεκTαrwritten in C + + and MPI is employed in all simulations (see Warburton
1998). A boundary-fitted coordinate system is employed similar to the laminar flow
simulations in Newman & Karniadakis (1997), which has been validated against
an arbitrary Lagrangian Euler (ALE) formulation (see Evangelinos 1999) that we
have also developed for moving domains (see Warburton & Karniadakis 1997). The
computational domain is shown in Appendix A in figure 28 where more details can
be found about the numerical method.

3. Spatio-temporal variation of amplitude, lift and drag
The self-limiting behaviour of VIV as the damping goes to zero has been well

documented by the various experimental data compiled by Griffin (1992) and was
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Figure 2. Two-dimensional simulations at Re = 100 (a) and Re = 1000 (b). Top: cross-flow
displacement history; middle: lift coefficient history; bottom: phase portrait. All quantities are
non-dimensionalized. The black triangles mark the transient stage where the lift and the displacement
are oscillating in phase.

also reproduced in the simulations of Newman & Karniadakis (1997). More specif-
ically, the simulations in the latter were for low Reynolds number (Re6 200) and
(especially the two-dimensional simulations) underpredicted the maximum amplitude
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Figure 3. Rigid cylinder: cross-flow displacement versus time (a) and span-averaged lift coefficient
versus cross-flow displacement (b). All quantities shown are non-dimensionalized.

at zero damping. Here, we first examine possible Reynolds number effects in the
two-dimensional simulations, by simulating lock-in states at Re = 100 and Re = 1000
but otherwise identical conditions.

In figure 2 we plot the results from these two-dimensional simulations. We see
that asymptotically (after the transients die out) approximately the same response is
produced in both simulations. More specifically, a small increase of less than 10%
in the amplitude is observed as we increase the Reynolds number from Re = 100
to Re = 1000. We also note that in the case of Re = 1000 a sudden increase in the
amplitude is associated with a corresponding increase of the lift coefficient and a
jump in phase between those two quantities. During this transient stage the lift force
and the cross-flow amplitude are in phase, as shown in the bottom plot of figure
2, and the amplitude reaches values of 0.7d. The two-dimensional simulations at
higher Reynolds number underpredict significantly the maximum amplitude response
at zero structural damping which according to the experiments is y/d ≈ 1 (see Griffin
1992). As regards the frequency response, at Re = 100 the input (non-dimensional)
frequency, i.e. the structure eigenfrequency, was set to fn = 0.167, which is equal to the
Strouhal frequency of the stationary cylinder flow at the same Reynolds number. The
resulting (non-dimensional) structure frequency and wake frequency obtained from
the simulation were 0.163 and 0.160, respectively. Similarly, at Re = 1000 the input
frequency was set to 0.238 and the structure and wake frequency obtained from the
simulation was 0.238. Therefore, for these two-dimensional simulations if the structure
eigenfrequency matches the Strouhal frequency of the corresponding stationary flow,
the frequency of the coupled system deviates very little. We will see that this is not
the case for the three-dimensional simulations.

3.1. VIV of a rigidly moving cylinder

In the following we will concentrate exclusively on three-dimensional simulations.
First, we present results from simulations of flow past a rigid cylinder at Re = 1000
subject to VIV. We see in figure 3(a) that a slightly modulated harmonic motion is
produced with maximum amplitude y/d ≈ 0.74, which is larger than the corresponding
value of the two-dimensional simulation of y/d ≈ 0.55. This motion is in phase with
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Figure 4. Rigid cylinder: lift coefficient along the span versus time.

the span-averaged lift coefficient as revealed in the phase portrait shown in figure
3(b) in agreement with the experiments of Brika & Laneville (1993). Note that in the
two-dimensional motion (see figure 2) the same large amplitude is obtained during
the transient short period when the lift coefficient is in phase with the cross-flow
motion (between times 130 and 140 non-dimensional time units). Correspondingly,
the values of the two-dimensional (during that transient period) and span-averaged
three-dimensional lift coefficient are also close.

The lock-in state of the freely oscillating rigid cylinder is described by a two-branch
response as documented in the detailed experiments of Brika & Laneville (1993) and
Khalak & Williamson (1996): an upper branch that corresponds to large amplitude
and low values of reduced velocity, and a lower branch that corresponds to low
amplitudes and large values of the reduced velocity. A similar result was also obtained
by Hover, Techet & Triantafyllou (1998) at a Reynolds number Re = 3800, which is
lower than that in Khalak & Williamson (1996) but at comparable (small) values of
the structural damping. The classical results of Feng (1998) were obtained for relatively
large damping (see also Brika & Laneville 1993) but they show essentially the same
response at reduced levels. By comparing the numerical results here with both sets
of recent experiments, it appears that the three-dimensional simulations capture the
upper branch corresponding to an oscillation in phase with the lift coefficient. There
is also agreement in the amplitude of oscillation with the experimental data, especially
with the data of Hover et al. (1998), which having been obtained at Re = 3800 are
closer to the Reynolds number in our simulation. On the other hand, it seems that the
two-dimensional simulations capture the lower branch of the amplitude response curve
corresponding to an oscillation which is not phase-synchronized with the lift force as
shown in figure 2. This observation was first made by Khalak & Williamson (1996)
in comparing their experimental data with two-dimensional simulations reported in
Newman & Karniadakis (1995).

The rigid cylinder is allowed to oscillate only in the cross-flow direction and
therefore the motion is uniform along its axis. However, the corresponding flow is
strongly three-dimensional as shown by the spanwise distribution of lift coefficient in
figure 4. It exhibits strong cellular structure with peaks exceeding the peaks of the
span-averaged coefficients by almost 50%.

As regards the frequency response, the input non-dimensional frequency was 0.238,
equal to the Strouhal frequency of the two-dimensional cylinder wake at Re = 1000.
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Figure 5. Flexible cylinder subject to forced oscillation: standing wave pattern
(a) and lift coefficient (b).

The resulting structure frequency (obtained from the spectrum of the cross-flow
motion) was 0.197 and the wake frequency was 0.201. Note that the Strouhal frequency
of the corresponding three-dimensional wake is 0.202. We see therefore here that the
coupled structure–flow system has a frequency response that greatly deviates from
the imposed frequency of the structure (here 0.238). This non-classical result has also
been reported in experimental studies recently by Gharib et al. (1998) and it was
found to be a function of the mass ratio; for large values of mass ratio the frequency
response approaches the classical lock-in behaviour.

3.2. Flow past a flexible cylinder in prescribed motion

To identify differences in forces due to the cylinder deformation only, we simulated
next a flexible cylinder subject to prescribed cross-flow vibrations corresponding to a
standing wave pattern as shown in figure 5. The amplitude of the oscillation is set to
match the amplitude of the free oscillation of the rigid cylinder at Re = 1000, and
the frequency is set to 0.197, close to the Strouhal frequency of a stationary cylinder
and equal to the frequency that the rigid cylinder in § 3.1 freely vibrated at. The
lift force is in phase with the cylinder cross-flow motion as shown in figure 5, and
the maximum amplitude of the lift coefficient is lower than the free-oscillating rigid
cylinder by about 20%.
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Figure 6. Cable: cross-flow displacement along the span versus time. The initial part of
the simulation is shown at the top and a later part at the bottom.

3.3. VIV of a cable

For the free periodic boundaries that we use, the standing wave response is not a
stable state if the cylinder motion is due to vortex shedding (VIV) and not a prescribed
motion. This was also shown to be the case for the laminar wake at Re = 100 (see
Newman & Karniadakis 1997), where an initial standing wave response, typically
although not always, turns into a travelling wave response. The details of the motion
depend on the type of structure at high Reynolds number, and in particular its
bending stiffness; this structural dependence is exhibited only in the transitional and
turbulent wakes. We examine this issue first by considering the cylinder as a flexible
cable and modelling its dynamics by a wave equation (2.1).

The initial conditions correspond to the case of the forced standing wave pattern
discussed in § 3.2. In figure 6 we plot the cross-flow displacement along the span as
a function of time. We see that the standing wave response turns into a modulated
travelling wave response after approximately 5 shedding cycles. Therefore, the coupled
cable–flow response in the ‘young’ turbulent regime at Re = 1000 is qualitatively
similar to the response at laminar conditions at an order of magnitude lower in
Reynolds number (see Newman & Karniadakis 1997). However, the travelling wave
in the turbulent state is subject to significant modulation unlike the laminar case.
We will discuss the corresponding flow structures in § 5. The cross-flow oscillation
amplitude reaches values of 1d in the initial stages, during the transition from standing
to travelling wave, and maintains values as high as 0.9d and slightly higher afterwards.
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Figure 8. Beam: cross-flow displacement along the span versus time. The initial part of
the simulation is shown at the top and a later part at the bottom.

Unlike the previous cases where we found that the lift coefficient and the cross-flow
displacement are essentially in phase, in the case of the freely vibrating cable this is
not true. To quantify this phase difference we employ complex demodulation analysis,
which is a more general approach than harmonic analysis in dealing with non-exact
periodic time series (see Bloomfield 1976). A complex demodulation of a time series
S(tn) with a dominant frequency component λ will give a time-varying amplitude R(t)
and phase Φ(t) such that

S(tn) ≈ R(tn)e
i(λtn+Φ(tn)). (3.1)

In figure 7 we plot the amplitude R(t) of the lift coefficient and its phase difference with
respect to the cylinder displacement. We see that there is a very strong correlation
between regions of almost zero phase difference and maximum amplitude in the
lift coefficient. However, and unlike the previous cases, there are also regions with
large phase differences between the lift forces and the cable motion. As regards the
frequency response, here the input (non-dimensional) frequency was set to 0.197,
close to the Strouhal frequency of the corresponding stationary three-dimensional
wake and equal to the frequency that the rigid cylinder in § 3.1 freely vibrated at. The
resulting frequencies of the structure and wake were 0.176 and 0.1876, respectively,
again deviating from the classical lock-in response, in agreement with the findings in
Gharib et al. (1998).
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3.4. VIV of a beam

Next, we examine the response of a beam, i.e. a structure with finite bending stiffness,
under identical conditions as in the cable case discussed above, including the same
initial conditions. The bending stiffness is chosen using (2.3) so that the same structural
mode m = 1 as before is mainly excited. We see again from the simulations that the
initially prescribed standing wave response turns into a modulated travelling wave
response as in the cable case, but the path of transition as well as the asymptotic
state are different. Therefore, different spanwise modes are excited in the beam case
compared to the cable case as can be seen by comparing (2.1) and (2.2) in Fourier
space. In figure 8 we plot the cross-flow displacement versus time, and we see this
transition from a standing to a modulated travelling wave response. However, we
also observe clear differences with the corresponding plot for the cable in figure 6.
Again, the cross-flow amplitude reaches values of 1d in the initial (transitional) stages
and maintains values over 0.8d afterwards. For both the cable and beam cases, the
1d amplitude reached is much larger than the 0.74d of the initial conditions of the
simulations – this indicates that amplitudes of that size are possible at Re = 1000.

To quantify the phase difference between the beam motion and the corresponding
lift coefficient, we employ again complex demodulation analysis to construct the plot
in figure 9 for the amplitude of the lift coefficient and its phase difference with respect
to the motion. We see that the maximum lift coefficient is subject to very large
modulation following the large variation in phase difference. For example, regions of
small phase difference (less than 10◦) result in values of maximum lift coefficient of
more than Cl ≈ 2 but phase differences of 90◦ or higher are also possible leading to
lift coefficient amplitudes of less than Cl ≈ 0.5. As regards the frequency response,
the input frequency was set to 0.197 as in the case of the cable, and the resulting
structure and wake frequencies were 0.178 and 0.1736, respectively.

3.5. VIV of a bean with pinned endpoints

To investigate the effect of the boundary conditions for the structure, we also simulated
flow past a flexible beam (with the same length and structural caracteristics as in
§ 3.4) with pinned endpoints (y = y′′ = 0).

In figure 10(a) we plot the cross-flow displacement of the pinned beam versus
time. A stable asymptotic standing wave response is observed, and we see that the
maximum amplitude is more than one cylinder diameter, and in fact about 20%
higher than the asymptotic travelling wave response seen in § 3.4. In figure 10(b) we
plot the corresponding lift coefficient distribution. The lift variation is again large,
displaying a clear standing wave pattern.

4. Correlation length and spectra
4.1. Autocorrelation functions

In studies of VIV the value of spanwise correlation length is very important as
many empirical models rely on it (see Blevins 1990). However, related studies and
experimental measurements are relatively few (see Toebes 1969; Ramberg & Griffin
1976). For stationary cylinders, detailed measurements of correlation length based on
the autocorrelation function were obtained only recently by Mansy, Yang & Williams
(1994). We define here the autocorrelation function as follows:

Ruu(l; x, y) =
u(x, y, z, t)u(x, y, z − l, t)

u2(x, y, z, t)
, (4.1)
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Figure 10. Beam with pinned endpoints: cross-flow displacement (a) and lift coefficient
(b) along the span versus time.

where the bar denotes averaging over time and over z-planes. Also, u(x, y, t) is the
fluctuation obtained after we subtract the mean quantity, i.e. averaged in time t and
span z at the (x, y) point.

In figures 11 and 12 we plot the absolute value of the autocorrelation function
for two points in the near wake for the streamwise and cross-flow components of
velocity. One point is on the centreline (x/d = 3; y/d = 0) and the other is one
cylinder diameter above it (x/d = 3; y/d = 1). We include results for a stationary
and a freely oscillating rigid cylinder, a cable and a beam. Results for the spanwise
component of velocity can be found in Evangelinos (1999).

These results are in good agreement with the results of Toebes (1969) for oscillating
rigid cylinders, and of Mansy et al. (1994) for stationary cylinders. In particular, the
oscillatory structure in |Ruu| (see figure 11) for a stationary cylinder was also shown
in the work of Mansy et al. (1994). The autocorrelation function |Rvv| (see figure 12)
indicates a high degree of correlation for the rigidly oscillating cylinder, consistent
with the experimental observations (Toebes 1969; also, M. S. Triantafyllou, private
communication).

Looking at the behaviour of the autocorrelation functions |Ruu| and |Rvv| in more
detail we note the following.

(i) The Ruu for the cable and beam at the centreline point become negative (hence
the ‘cusp’ in the |Ruu| graph) at approximately the mid-quarter spanwise location in
agreement with the experimental measurements of Ramberg & Griffin (1976). For
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Figure 11. Autocorrelation function for the streamwise component of velocity in the near wake at
a centreline point (x/d = 3; y/d = 0) (a) and an off-centreline point (x/d = 3; y/d = 1) (b). The
distance dz is non-dimensionalized with the cylinder diameter d.
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Figure 12. Autocorrelation function for the cross-flow component of velocity in the near wake at
a centreline point (x/d = 3; y/d = 0) (a) and an off-centreline point (x/d = 3; y/d = 1) (b). The
distance dz is non-dimensionalized with the cylinder diameter d.

off-centreline locations, the rigidly oscillating cylinder displays the same behaviour
as the two flexible structures, with two crossings of the horizontal axis at L/8 and
3L/8. In this case the actual value for the cable |Ruu| is very small, with slightly larger
values for the beam.

(ii) For the stationary cylinder |Ruu| and |Rvv| decay about equally slowly for the
off-centreline point. In the case of the centreline point though, |Ruu| decays rapidly
while |Rvv| decays even more slowly than in the case of the off-centreline point.

(iii) The rigidly moving cylinder exhibits large values of |Rvv| for both points
(relatively larger in the case of the off-centreline one) – the function (as expected) does
not tend to zero.
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Figure 13. Energy spectra (streamwise velocity) for stationary (s), freely oscillating rigid cylinder (r),
cable (c) and beam (b) at a point in the wake at centreline (x/d = 3, y/d = 0) (a) and off-centreline
(x/d = 3, y/d = 1) (b).
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Figure 14. Energy spectra (cross-flow velocity) for stationary (s), freely oscillating rigid cylinder (r),
cable (c) and beam (b) at a point in the wake at centreline (x/d = 3, y/d = 0) (a) and off-centreline
(x/d = 3, y/d = 1) (b).

(iv) The cable and the beam Rvv values initially decay similarly but cross the
horizontal axis at slightly different locations for the first time (the cable values
around L/4, the beam at a lesser value). For larger dz values, both of them cross the
axis again for the centreline point but this is not so for the off-centreline one in the
case of the cable. The beam values for the centreline point reach the level of those of
the rigidly moving cylinder for larger dz while the cable values stay small.

We note again that there is greater similarity between the Ruu values for the cable
and the beam than for the corresponding Rvv ones; it is not clear to us at present
why there is such a discrepancy.

4.2. Spectra of the velocities in the near wake

Next, we turn our attention to the pointwise statistics focusing on both the near wake
as well as the structure itself. First, we present energy spectra obtained at the points
(x/d, y/d) = (3, 0) (centreline) and (x/d, y/d) = (3, 1) (off-centreline) for a stationary
and a freely oscillating rigid cylinder, a cable and a beam.

In figure 13 we plot the results of the streamwise velocity signal by normalizing
the frequency with the corresponding dominant frequency of the near wake for each
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case. In figure 14 we plot the corresponding results for the cross-flow velocity; data
for the spanwise component can be found in Evangelinos (1999). We see that even at
this relatively low Reynolds number of Re = 1000 an inertial subrange of about half
a decade or more in wavenumber has been established. For the stationary cylinder,
scales which are higher than 10 times the Strouhal frequency are rapidly decaying;
however for the rigid cylinder even high-frequency components are very energetic,
with the cable/beam ones somewhat less energetic. We note the following.

(i) For the centreline point:
only the cross-flow velocity spectra exhibit a sharp peak at the Strouhal fre-
quency; the inertial range for the stationary cylinder is the widest, and for at
least half a decade the spectrum for the beam and the cable is at the same
level, with that of the rigidly moving cylinder slightly below; in the smallest
scales, the situation is reversed.

(ii) For the off-centreline point:
all velocity spectra exhibit a sharp peak at the Strouhal frequency; the inertial
range for the rigidly moving cylinder, cable and beam appears to be common,
except for the case of the cross-flow velocity where the rigidly moving cylinder
spectrum falls off the − 5

3
slope first; in all cases the spectrum for the stationary

cylinder is below that of all the other cases past the Strouhal frequency; the
cross-flow velocity spectrum exhibits a strong 2f superharmonic response for
all the moving structure cases.

4.3. Excitation of the structural modes

It is clear from the results presented above that the cable–flow response is substan-
tially different from the beam–flow response at this Reynolds number (Re = 1000),
despite the fact that the scaled wake velocity spectra of the beam and cable wakes
were shown to be almost identical. At lower Reynolds number, i.e. Re = 100, the
responses are identical as the only excited mode is the first one (m = 1) (Newman &
Karniadakis 1997). We have found in our simulations (see Evangelinos 1999) that for
1006Re6 200 a transition takes place for the cable–flow system and other modes,
in addition to the first one, are excited although at reduced levels. However, for the
beam–flow system this transition takes place at substantially higher Reynolds number
(Rec> 500) although we could not bracket exactly the critical value.

At the Re = 1000 that we study here we have decomposed the amplitude of
the vibration into Fourier modes along the spanwise direction. In figure 15 we plot
the amplitude of the first four modes of the cable motion versus time. We see that
although the first mode dominates, the other three modes contribute a non-negligible
amount to the energy, with the second and third mode almost at the same level. The
same type of decomposition is shown in figure 15 for the beam, with the important
difference that here all modes are clearly separated and at reduced levels compared to
the cable modes. This is consistent with our aforementioned finding that the critical
Reynolds number for transition is lower for the cable than for the beam.

5. Flow visualizations
5.1. Two-dimensional simulations

We first examine flow structures present in the two-dimensional simulations at Re =
1000. As we can see from the variation of lift as a function of time in figure 2 there
are two distinct states that the flow goes through before it reaches its asymptotic state.
(The initial conditions at t = 100 correspond to a converged flow past a stationary
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Figure 15. Cable (a) and beam (b): time-history of the (square) amplitude of the first four modes
of cross-flow displacement. First mode is solid line, second mode is dashed line, third mode is solid
triangles and fourth mode is open squares.
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Figure 16. Vorticity contours at t ≈ 122 (two-dimensional simulation, Re = 1000).
Only the near wake is shown for clarity.

cylinder.) In figure 16 we plot the instantaneous vorticity field at non-dimensional
time t ≈ 122, which corresponds to approximately five shedding cycles after the initial
state; at that instance the lift coefficient and the motion are out of phase by 180◦.
We see that the near wake corresponds to a 2P pattern, the intermediate wake to a
P +S pattern, and the far wake to a 2S (not shown here, see Evangelinos 1999). Here
we use the terminology introduced by Williamson & Roshko (1988) to characterize
the shedding patterns in flow past an oscillating cylinder, with 2S being the standard
von Kármán mode, 2P a pattern with two pairs of vortices per shedding cycle, and
P + S a pattern of three vortices per shedding cycle. In figure 17 we plot vorticity
contours at t ≈ 136, which corresponds to a cylinder motion in phase with the lift
and a relatively large amplitude of oscillation (see figure 2). We see that the near
wake exhibits P + S patterns (two large vortices plus a small vortex always shed to
the same side every cycle – notice the small vortices at about (3,−1.5) and (7,−1));
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Figure 17. Vorticity contours at t ≈ 136 (two-dimensional simulation, Re = 1000).
Only the near wake is shown for clarity.
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Figure 18. Vorticity contours at t ≈ 176 (two-dimensional simulation, Re = 1000).
Only the near wake is shown for clarity.

the vortex street becomes unstable beyond x/d ≈ 10. In the far wake we observe a
mixed response downstream consisting of a 2P pattern (at 20d and 30d) and a P + S
pattern (at 40d) (see Evangelinos 1999). Finally, in figure 18 we plot vorticity contours
representative of the asymptotic state at t ≈ 176. We see that a 2P shedding pattern
emerges in the near wake, followed by a 2S pattern, before the vortex street becomes
unstable farther downstream.

The coexistence of such mixed responses, revealed in our simulations, has also
been discovered by Ongoren & Rockwell (1988) in their systematic experimental
investigation of cylinders subject to prescribed oscillations. At low Reynolds number,
Re = 200, independent simulations by Newman & Karniadakis (1995) and Meneghini,
Saltara & Bearman (1997) have shown that the standard 2S pattern is maintained
for the oscillating cylinder, similar to the stationary cylinder but with a larger
lateral vortex spacing. At Reynolds number Re = 500 we found in our simulations
(Evangelinos 1999) that at lock-in a P + S shedding pattern prevails, which may
result in a symmetry-breaking bifurcation of the motion. However, at states somewhat
farther from the resonant state the 2S mode re-appears and symmetry is restored.

The amplitude of the oscillation is low for all the cases reported except from the
short interval between time t ≈ 130 and t ≈ 145 in figure 2. These results agree
with the results of Saltara et al. (1998), who have also computed similar values for
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the amplitude of the motion and have observed both 2P and 2S shedding patterns
depending on the value of the reduced velocity. The small amplitudes observed in the
two-dimensional simulations suggest that the resonant branch simulated is actually
the lower one as observed in the experiments of Brika & Laneville (1993) and Khalak
& Williamson (1996). The simulations show that in this case a 2P shedding pattern
prevails in the near wake consistent with the experimental observations. However, the
P+S flow pattern simulated in figure 17, which is only stable for a short time interval,
corresponds to the upper branch of the resonant curve, for which a 2S pattern was
assigned in the experiments of Brika & Laneville (1993) and Khalak & Williamson
(1996). The reason for that discrepancy between simulation and experiment is that
the third vortex present in the P + S pattern is so weak that it diffuses very quickly
and disappears almost immediately after the first pair of vortices, so it is very hard
capture in the experiments. At Reynolds number Re = 500 this P +S pattern survives
and is convected a large distance downstream before the vortex street breaks down
at about 30d (see Evangelinos 1999).

5.2. Low-Re vs. high-Re flow past a rigidly moving cylinder

The flow patterns in the three-dimensional simulations presented are substantially
different from the two-dimensional ones not only for flows past a cable or a beam
where the oscillation amplitude varies along the span, but also for the freely moving
rigid cylinder.

To contrast low Reynolds number shedding with shedding at Re = 1000 we first
plot in figure 19 pressure isocontours at Re = 300 for the freely oscillating rigid(ly
moving) cylinder. We see that shedding is parallel in the near wake and that the
first strong interaction occurs at a location x/d ≈ 10. The near wake also appears
two-dimensional up to that location. The corresponding shedding pattern is of the
type 2S as in the low Reynolds number two-dimensional simulations.

At Re = 1000 the vortex tubes shown clearly in the low Reynolds number simula-
tions are very deformed and are only visible in the very near wake. For the stationary
cylinder (not shown here) the shedding is nominally parallel, although there is sub-
stantial three-dimensional structure in the form of small cells along the span. For
the rigid freely oscillating cylinder shown in figure 20 shedding is also parallel, and
by examining several slices of the flow along the span we identify a 2P pattern.
Therefore, there is a switch from the 2S mode to a 2P mode as the Reynolds number
increases, similar to the qualitative change in the two-dimensional simulations, and
in accord with the visualizations of Sheridan et al. (1998).

5.3. Re = 1000 flows past flexible cylinders

In figure 21 we plot similar pressure contours for flow past a cable at Re = 200. In
this case an oblique shedding pattern is present, which is caused by the travelling
wave along the cable as shown also in Newman & Karniadakis (1997). The angle
of the oblique shedding with respect to the axis of the cable is approximately 18◦.
Notice that the direction of the travelling wave, and thus of the oblique shedding,
depends on the initial conditions; for example, different initial conditions may result
in oblique shedding at −18◦. Although not very clear, the shedding pattern appears
to be of 2S type.

For the beam and the cable the vortex shedding at Re = 1000 has changed
significantly compared to the low Reynolds number states. In figure 22 we plot
pressure isocontours of the flow past a beam. We see that part of the wake corresponds
to parallel shedding, similar to the rigid cylinder, and part corresponds to oblique
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Figure 19. Rigidly moving cylinder at Re = 300: pressure isocontours at values −0.3 and −0.4.
View facing the inflow from the side (flow is in the direction of the positive x-axis).

shedding at an angle of about 30◦. The same mixed shedding pattern is observed for
cables as shown in figure 23, where we plot pressure contours at the same time instance
as the beam (t = 508.09). The oblique shedding is at a different angle (approximately
40◦ instead of 30) when compared to the beam. This underlines the importance of the
structure type, which is the only difference between these cases. We recall that spectra
taken for the beam and cable in the near wake are almost identical at the small scales
but that differences appear in the autocorrelation functions. We see from the flow
visualizations here and the spectra in figures 13 and 14 that statistical differences
between the cable and the beam flows are substantially smaller than instantaneous
differences or real flow structures.

The parallel-oblique pattern alternates from side to side along the span. In figure 24
we plot pressure contours again for the cable at a different time instance (t = 487.34)
for which the cable is approximately in anti-phase with the cable at time t = 508.09
(see figure 23). We see that the parallel and oblique shedding patterns are on opposite
sides in the two plots. This behaviour is also seen clearly for the beam (see figure
25 for a different angle of view). These as well as other flow visualizations not
shown here suggest that the onset of oblique shedding coincides with the node
which is travelling along the span. This creates a discontinuity in phase or a vortex
dislocation (see Williamson 1996), which causes vortex filaments to turn with respect
to the axis of the cable resulting in oblique shedding. These vortex filaments produce
patterns similar to what have been termed phase shocks by Miller & Williamson
(1994) who have created such structures experimentally using variable suction at the
ends of a stationary cylinder. There is, however, a difference with the structures in
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Figure 20. Rigidly moving cylinder at Re = 1000: pressure isocontours at values −0.3 and −0.2.
View facing the inflow from the side.

our visualizations: unlike the experiment of Miller & Williamson (1994) where the
discontinuity point is fixed, here it coincides with the node, which is moving with
the phase speed along the span of the cable or beam. In the experiments with the
stationary cylinder, therefore, the inclined vortex filaments are located towards one
side of the cylinder, whereas in the cable or beam simulations the inclined filaments
alternate sides.

The form of the shedding patterns is important as it is directly related to the
forces on the structure. For example, examination of the instantaneous lift force
spatial distribution shows that the maximum of lift coefficient corresponds to oblique
shedding downstream. This is clearly shown by plotting the lift coefficient on the
cable in figure 26 and marking the locations t = 508.09 and t = 487.34 corresponding
to visualizations in figures 23 and 24, respectively.

A fundamentally different pattern is produced if the endpoints of the flexible
cylinder in the span are pinned. In this case, a standing wave describes approximately
the motion of the flexible cylinder. In figure 27 we plot instantaneous pressure contours
for this flow at four consecutive time instants. The shedding patterns for this case are
different from before, as the vortex tubes shed off the cylinder are bent towards the
flow direction with fixed vortex dislocations at the two fixed nodes along the span.
These flow structures appear to be a higher-Re ‘relative’ of the three-dimensional
staggered pattern of lambda-type vortices observed in low-Re simulations (Newman
& Karniadakis 1995, 1996, 1997).



Cylinders subject to vortex-induced vibrations 113

Y

X

Z

Figure 21. Cable at Re = 200: pressure isocontours at values −0.3 and −0.35.
View facing the inflow from the side.

6. Summary and discussion
In this paper we have investigated the flow past rigidly moving and flexible cylinders

subject to vortex-induced vibrations in the lock-in regime. We chose to perform all
simulations at Re = 1000 as this corresponds to an order of magnitude increase
compared to our previous studies (Newman & Karniadakis 1997) and at the same
time the corresponding flow exhibits a turbulent wake. In addition, with this choice
we can keep the expense of the computations reasonable and still maintain very
high numerical accuracy. As regards the aspect ratio value of L/d = 4π, its selection
represents a reasonable choice dictated by physical reality (see Vandiver 1991) and
computational feasibility. Aspect ratio effects have already been studied previously in
Newman & Karniadakis (1997) (where the aspect ratio was varied up to a value of 200
at Re = 100); more recent studies at Re = 1000 can be found in Evangelinos, Lucor
& Karniadakis (1999) (where an aspect ratio of 378 was used). Due to the periodic
boundary conditions we employ, the physical system that we consider corresponds
to a long cylindrical structure having one of its high modes locked-in with the flow
vortex shedding. The wavelength of the locked-in mode is then determined from
the assumed aspect ratio and the structural parameters. In the case of the pinned
endpoint simulations, the equivalent physical system would be a very long cylinder
held in place by a periodic array of supports, a distance L apart.

Despite such simplifications the coupled flow–structure system exhibits quite com-
plex dynamics, in agreement with the physical observations. In particular, we found
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Figure 22. Beam at Re = 1000: pressure isocontours at values −0.25 and −0.18 (t = 508.09). View
facing the inflow from the side.

that the amplitude of the oscillation of the structure increases to a value of about 1d
(and asymptotically stays around 0.9d) if the cylinder is flexible with freely moving
endpoints. For a rigid cylinder the amplitude was found to be about 0.75d. The
cases with pinned endpoints gave us amplitudes even higher than 1d. This kind of
response should be contrasted with the value of 0.5d–0.6d obtained in the laminar.
Such Reynolds numbers effects have recently been quantified in experimental studies
(see Ching et al. 1998) but at a higher Reynolds number. The two-dimensional simu-
lations predict an amplitude similar to the laminar flow, i.e. of the order of 0.5d–0.6d
even at Re = 1000. A correlation between the cross-flow displacement and lift forces
phase difference and the magnitude of the lift forces was observed and contrasted to
results from two-dimensional simulations.

We observed two different types of cylinder oscillations, the first resembling a
travelling (progressive) wave when the endpoints were free to move, and the second
resembling a standing wave when the endpoints were pinned. Asymptotically, the
maximum cylinder displacement is about 0.9d in the travelling wave case and 1.1d in
the standing wave case. The root-mean-squared lift coefficient is about 0.8 for both
cases but slightly larger in the case of the standing wave.

We simulated our structure not only as a cable but also as a beam, i.e. a structure
with non-negligible bending stiffness, and compared the beam–flow response with a
cable–flow response. We found that at low Reynolds number in the laminar regime
the responses are identical but at Re = 1000 there are significant differences both
in the flow structure and the dynamics of the cylinder. It is clear that in a multi-
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Figure 23. Cable at Re = 1000: pressure isocontours at values −0.15 and −0.12 (t = 508.09). View
facing the inflow from the side.

modal response away from a lock-in state such differences will be even larger. The
autocorrelation function for the velocity components in the wake of a beam appears
to be in-between the cases of the wake behind a rigidly moving cylinder and that
behind a cable. However, despite such differences in large scales there is a remarkable
statistical similarity in the small scales as exemplified by comparisons of frequency
spectra between the cable–flow and the beam–flow systems.

It has been suggested by Khalak & Williamson (1996) that the two-dimensional
simulations capture the lower branch of the resonant curve, which corresponds to
a 2P type shedding pattern according to their observations and in agreement with
the visualizations of Brika & Laneville (1993). We re-examined this hypothesis in the
current investigation and we found it to be true at Re = 1000, but at lower Reynolds
number a different shedding pattern emerged of the standard 2S type or the more
unusual P + S type. This latter type of shedding was also present in the Re = 1000
simulations but only for a brief transient period of about two to three shedding cycles
resulting in a higher amplitude of oscillation. We found that the specific shedding
pattern sustained depends not only on the Reynolds number but also on the specific
value of the reduced velocity even within the lock-in region; this was also observed
in independent two-dimensional simulations by Saltara et al. (1998).

The three-dimensional shedding patterns are substantially different even for the
case of a rigid cylinder that experiences the same displacement along all the points
in the span. At Re = 1000 the flow is strongly three-dimensional although nominally
parallel shedding prevails in the near wake but with a spanwise distribution of phase
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Figure 24. Cable at Re = 1000: pressure isocontours at values −0.15 and −0.12 (t = 487.34). View
facing the inflow from the side.

difference between the motion and the wake of about ±10◦. For flexible cylinders,
their modulated travelling wave response causes oblique shedding patterns as in the
low Reynolds number regime (Newman & Karniadakis 1997). At Re = 1000 these
patterns coexist with parallel shedding, and the two patterns alternate sides (along
the span) during one shedding cycle. This periodic change from oblique to parallel
shedding corresponds to a large variation of the lift forces along the span, so by
knowing the near-wake shedding pattern we can infer the lift coefficient distribution
on the cylinder. A similar mixed parallel/oblique shedding pattern has also been
visualized at a lower Reynolds number in the experiments of Van Atta et al. (1988).
Such large-scale phenomena characterized as phase shocks (see Miller & Williamson
1994) can be described by a low-dimensional model such as the Ginzburg–Landau
equation (see Albarede & Monkewitz 1992).

Unfortunately, currently there are no available complete experimental data to
substantiate the new findings presented here regarding both the statistical quantities
we computed as well as the flow structures we observed. It remains still an open
question, assuming that the two-dimensional simulations capture the lower branch
of the resonant curve, if the three-dimensional simulations capture the upper branch

Figure 25. Beam at Re = 1000: (a) pressure isocontours at values −0.24 and −0.18 (t = 490.09);
(b) pressure isocontours at values −0.24 and −0.18 (t = 532.09). Views facing the outflow from the
side (flow is in the direction of the positive x-axis).
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Figure 25. For caption see facing page.



118 C. Evangelinos and G. E. Karniadakis

12

10

8

6

4

2

0
480 490 500

15

13

11

9

7

5

3

1

2.620

1.896

1.171

0.447

–0.277

–1.001

–1.726

–2.450

Cl

t = 508.09t = 487.34

tU/d

z
d

Figure 26. Cable at Re = 1000: lift coefficient along the span versus time.

given the larger values of the cross-flow displacement. The 2S shedding pattern
assigned to the upper branch by Khalak & Williamson (1996) and by Brika &
Laneville (1993) does not seem to be a unique feature of that state. The current
simulations suggest that patterns of the type P + S may also be associated with the
upper branch; however these are difficult to discern experimentally due to the much
weaker “third” vortex of the group and its fast dissipation.
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Appendix A. Numerical formulation and validation
To solve the three-dimensional Navier–Stokes equations, the new code NεκTαr

(see Warburton 1998) is used. It is based on hierarchical spectral/hp expansions on
hybrid subdomains, i.e. triangles and quadrilaterals as shown in figure 28. Jacobi
polynomials of mixed weights are used for the trial basis that form tensor products
of generalized type. The nonlinear products are handled using effectively a super-
collocation approach followed by a Galerkin projection (Karniadakis & Sherwin
1999). Each element can accommodate variable spectral order so that regions of
different dynamics are treated accordingly as shown in the figure. This is accomplished
by arranging the trial basis in terms of vertex, boundary and bubble modes and
ensuring matching of the boundary modes, thus satisfying the C0 continuity condition
required in the Galerkin formulation.

The parallel implementation is based on a framework similar to that described
earlier in Crawford et al. (1996). Two-dimensional elements are used to discretize
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Figure 27. Standing wave response for a beam with pinned endpoints at Re = 1000: pressure
isocontours at values −0.1 and −0.2. The different snapshots correspond to times one-fifth of the
shedding cycle apart (a, b, c, d). Views facing the outflow from the side (flow is in the direction of
the positive x-axis).

the (x, y)-planes, while a Fourier expansion is used in the z-direction (i.e. along the
cylinder axis) with a dealiasing 3

2
rule. A Newmark integration scheme (see Hughes

1987; Newman 1996) is used to solve for the structure.
The computational domain for the (x, y)-plane used for the Re = 1000 (as well as

any Re = 500) calculations extends 69d (cylinder diameters) downstream, and 22d in
front, above and below the cylinder. For three-dimensional simulations the spanwise
length is L/d = 4π. A K = 1018 element hybrid mesh was used for the Re = 1000
calculations (see figure 28), with a slightly smaller K = 988 element one for any
Re = 500 ones. The polynomial order used varied across the domain as shown in
figure 28. Two different resolutions were used in the z-direction for all cases: 32 z-
planes (16 independent Fourier modes) for the stationary and rigidly moving cylinder
simulations and 64 z-planes for cables and beams; a 3

2
de-aliasing rule was always

used. For the largest cases this meant more than 19 million degrees of freedom over
the three velocity fields and pressure. For all but the stationary cylinder calculations
(which can sustain twice the timestep size) CFL limitations force a non-dimensional
time step of ∆tU/d = 0.0005 to be used giving over 10 000 time steps per shedding
cycle. Simulation runs were performed on 32 processors of a Cray T3E-900 and an
IBM SP2/160MHz P2SC, used up approximately 200MB per processor and took
close to 12 seconds per time step in the case of the flexible cylinders.
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Figure 28. Hybrid grid in the (x, y)-plane; Fourier expansions are used in the periodic spanwise
direction. Close-up of the discretization around the cylinder (a), and colour contours of the variable
expansion order (polynomial order + 1) per element (b).

Validation of the new code NεκTαrwas accomplished by repeating laminar
flow simulations as in Newman & Karniadakis (1997) and also by comparing with
experimental results. For the moving domain the results of the boundary-fitted co-
ordinate formulation were compared (see Evangelinos 1999) to a different arbi-
trary Lagrangian–Eulerian (ALE) formulation (Warburton & Karniadakis 1997) and
very good agreement was obtained for identical boundary conditions. A systematic
validation study was performed for the stationary turbulent wake at Re = 1000
and comparisons were made with earlier simulations using mortar spectral ele-
ment simulations (Henderson & Karniadakis 1995) and also accepted experimental
results (Norberg 1994) (and references therein). A summary of this comparison
is shown in table 1, where we see that the current simulation results are much
closer to the experimental results than the computations reported in Henderson &
Karniadakis (1995). A breakdown of the contribution to lift and drag of pressure-
and viscosity-generated forces is shown in figure 29. We have used these measures
to conduct refinement studies as well as to choose the size of the computational
domain.

Appendix B. Three-dimensional simulations: visualization approach
NεκTαr uses unstructured and hybrid domains, which lead to a distribution of

output data in a very non-uniform grid. Most available visualization packages suffer
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Figure 29. Fluctuating lift and drag coefficients for flow past a stationary cylinder at Re = 1000:
pressure forces (a) and viscous forces (b).

St −Cpb Cd Ćd Ćl

2D Henderson & Karniadakis (1995) 0.237 1.6944 1.5144 0.1594 1.0494
2D current 0.238 1.7138 1.5406 0.1715 1.0696
3D Henderson & Karniadakis (1995) 0.211 1.1225 1.1999 0.0491 0.2052
3D current 0.202 0.8429 1.0192 0.0348 0.0991

Experiment 0.21 0.8 1.0 ? ?

Table 1. Comparison of simulation results with experimental results for flow past a stationary
cylinder at Re = 1000. St is the Strouhal frequency, Cpb is the base pressure coefficient, Cd is the

mean drag coefficient, Ćd is the standard deviation in the drag coefficient and Ćl is the standard
deviation in the lift coefficient.

from severe accuracy degradation when handling data in non-uniform grids. To this
end, we first interpolate the output of NεκTαr using spectral interpolations on a
uniform grid by respecting the dynamic changes in the geometry, and subsequently
we perform the visualizations.

We are interested in studying the near-wake vorticity dynamics and so vorticity
visualization is a standard approach used. While this is useful and admits a fairly
simple interpretation in two dimensions, in three dimensions vorticity visualizations
are substantially more difficult to perform and to interpret. For example, if vorticity
magnitude is used as a scalar quantity to visualize the near wake in flow–structure
interactions, important details of the dynamics cannot be presented. Instead, we can
use isosurfaces of pressure at appropriate levels to visualize details of the wake. A
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Figure 30. DNS of flow past a flexible beam at Re = 1000. (a) Total vorticity magnitude at levels
3.0 and 5.5; (b) spanwise vorticity at −1.7 and 1.7; (c) pressure isosurfaces at −0.18 and −0.24.
(d) isocontour at −1.3 of the second largest eigenvalue of the velocity gradient tensor using the
technique of Jeong & Hussain (1995). All values are non-dimensionalized with respect to the flexible
cylinder diameter and the freestream velocity.

more accurate approach is to find the vortex cores using the approach pioneered by
Jeong & Hussain (1995) based on the eigenvalues of the velocity gradient tensor, but
this is rather costly.

To contrast the visualization results obtained using the different methods, we plot
in figure 30 isosurfaces of vorticity magnitude at two different values, and pressure
isosurfaces. In particular, we employ a solid surface at a minimum (negative value) and
another grid surface at a value slightly above the previous one. To demonstrate that
the iso-pressure surfaces so tracked are representative of the corresponding vorticity
dynamics, we also plot in figure 30 a similar plot of the spanwise vorticity following
the same two-surface tracking approach, as before. We see that indeed the pressure
isosurface and the spanwise vorticity isosurfaces present the same instantaneous
picture in the near wake. We also include an isocontour plot following the technique
of Jeong & Hussain (1995), which shows the resemblance with the other plots but it
is not as informative as the pressure isosurface plot. In general, it is more efficient
to follow pressure isosurfaces than vorticity (which needs to be computed at post-
processing) isosurfaces, so this is the approach we employ.
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